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One of the greatest pleasures in doing mathematics (and one of the surest signs of being onto 

something really relevant) is discovering that two apparently completely unrelated objects actually 

are one and the same thing. This is what Étienne Ghys, of the École Normale Superieure de Lyon, 

did a few years ago (see [1] for the technical details), showing that the class of Lorenz knots, 

pertaining to the theory of chaotic dynamical systems and ordinary differential equations, and the 

class of modular knots, pertaining to the theory of 2-dimensional lattices and number theory, 

coincide. In this short note we shall try to explain what Lorenz and modular knots are, and to give a 

hint of why they are the same. See also [2] for a more detailed but still accessible presentation, 

containing the beautiful pictures and animations prepared by Jos Leys [3], a digital artist, to 

illustrate Ghys’ results.  

1. What is a knot?  
Informally speaking, a knot is a closed piece of string in space. More formally, a knot is a (globally 

injective) embedding of the circumference S1 in the Euclidean 3-space R3. Two knots are 

considered the same if there is a way of continuously deform the space R3 so to bring the first knot 

exactly onto the second knot (or its mirror image). In more technical terms, two knots are equivalent 

if there is a homeomorphism of R3 (a bijective continuous transformation of the space onto itself 

with a continuous inverse) transforming the first knot in the second. In particular, a knot equivalent 

to the standard unit circumference in the plane is actually unknotted, and thus considered a trivial 

knot. See, e.g., [4] for a not exceedingly technical introduction to the mathematical theory of knots. 

Mathematicians are entomologists at heart; they are prone to uncontrollable classification urges. 

For instance, one would like to have a list of all possible knots (up to equivalence, of course). The 

usual way for representing a knot consists in projecting it onto a plane so that the projection crosses 

itself in a finite number of points, and only two strands of knot pass through any crossing point. So 

one may look for the projection with the least number of self-crossings of a given knot (or, more 

precisely, of all equivalent forms of a given knot), and try to organize the knots according to this 

least number of self-intersections. For instance, the trivial knot clearly admits a representation with 

no self-crossings: the standard circumference. It is not difficult to see that knots admitting 

representations with only one or two self-crossings are actually unknots; so the first non-trivial knot 

is the trefoil knot, whose representation (see knot 31 in Fig. 1) has exactly three self-crossings. Fig. 

1 contains representations of distinct knots with at most 9 self-crossings. 

A particular subclass of knots will be mentioned later on. A torus is a doughnut-shaped surface, 

that is the Cartesian product of two circumferences; a torus knot is a knot on a torus. In other words, 
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in a torus knot the string winds on the surface of a torus. Fig. 2 contains the representations of the 

simplest torus knots; see [5] for more pictures of knots. 

 
Fig. 1 Knots (from www.knotplot.com) 
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Fig. 2 Torus knots (adapted from www.knotplot.com) 

2. What is a Lorenz knot? 
Lorenz knots appear in the first, and still most famous, example of chaotic dynamical system, 

introduced by Edward N. Lorenz in 1963 [6] as a simplified model for convection in the 

atmosphere. This model consists of three (mildly non linear) ordinary differential equations:  

x’ = 10(y – x),  y’ = x(28 – z) – y,  z’ = xy – (8/3) z. 

How Lorenz noticed the presence of chaos in this system is by now almost legendary. He was 

solving numerically this system on a (large, for the time) computer, but he had to interrupt the 

computations for the night. The next day he gave as input to the computer the results of the 

computations of the previous afternoon, and soon noticed that the results he was obtaining were 

sensibly different from the ones he got the day before, even though the initial conditions were the 

same. Or were they? After several weeks of careful checking of the programs and computers 

involved to rule out any possible mistake, Lorenz realized that the data he entered the second day 

were only approximations of the data stored into the computer; and even though they were very 

good approximations (to the sixth decimal digit or so), this apparently negligible difference at the 

beginning provoked hugely different outcomes at the end. 

Lorenz had discovered one of the most distinctive characteristics of chaotic dynamical systems: 

sensitive dependence on initial conditions. The slightest change in the initial state can cause a 

completely different result, the so-called (and by now exceedingly famous) butterfly effect. But in 

his model Lorenz also discovered another butterfly, which is more relevant to the present 

discussion. 
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The Lorenz model, as any system of ordinary differential equations in three variables, prescribes 

at each point in space a velocity vector; we can then start from any point in space, and move 

according to the speed and direction given by these velocity vectors. The itinerary we follow is an 

orbit of the model. Lorenz noticed that almost all orbits tended to accumulate onto a peculiar and 

approximately butterfly-shaped set, having a very intricate geometric structure (later on it was 

proved that it is a fractal set of dimension slightly larger than two). This set, the Lorenz attractor, 

was the first example of strange attractor for a chaotic dynamical system; check [3] for beautiful 

pictures of the Lorenz attractor, and [7] to play with different orbits and see in real time how they 

accumulate onto the Lorenz attractor (and how they depend on the choice of initial conditions). 

Most orbits go around wildly getting closer and closer to the Lorenz attractor; but a few special 

ones actually lives in the Lorenz attractor itself. These are the periodic orbits: orbits that after a 

finite amount of time come back to their starting point. Periodic orbits are thus (never self-

intersecting) closed curves in Euclidean space, that is, they are knots. And yes, the Lorenz knots are 

exactly the periodic orbits of the Lorenz model. 

It turns out that Lorenz knots fill out (they are dense, another typical feature of chaotic dynamical 

systems is the coexistence of periodic behavior with very wild behavior) the Lorenz attractor, and 

so understanding them might give important information on the structure of the Lorenz attractor. In 

the Eighties Joan Birman and Bob Williams [8] started studying Lorenz knots, trying to understand 

and classify them. They showed that all torus knots are Lorenz knots; and very recently Birman and 

Ilya Kofman have proved that every Lorenz knot is a twisted torus knot, a knot that can be obtained 

from a torus knot by a simple procedure (amounting to cutting the knot in several carefully chosen 

places, twisting the strands according to specific rules, and then gluing the strands together; see [9] 

for details). 

3. What is a modular knot? 
To explain what is a modular knot we must first explain what a lattice is.  

Roughly speaking, a lattice is a discrete family of points (in a line, a plane, a space…) uniformly 

distributed. The easiest example of lattice is the set of integer numbers in the real line; and, in a 

sense, this is the only example of lattice in the line. Indeed, if we take any lattice in the line, up to a 

translation we can assume that it contains the origin; and up to a rescaling we can assume that it is 

normalized, that is that the distance between two consecutive points in the lattice is exactly one — 

and thus we have recovered the integers. From a geometrical point of view, then, a lattice in the line 

is obtained by covering the line with infinitely many copies of the same basic block, an interval (of 

length one if the lattice is normalized). 
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In the plane, the situation is considerably more complex. As building block for a lattice we can 

use a parallelogram; but even assuming (as we may up to a translation) that one of the vertices of 

the parallelogram is the origin, we still have infinitely many distinct cases to consider. If one vertex 

is the origin, to describe the parallelogram (and hence the lattice obtained by covering the plane 

with copies of the basic parallelogram) it suffices to give the coordinates of two other vertices,  v1 = 

(a1, b1) and v2 = (a2, b2). Furthermore, we can also assume that (up to a rescaling) the lattice is 

normalized, that is that the basic parallelogram has area one (conditions amounting to requiring that 

a1 b2 – a2 b1 is equal to one).  

So to describe a normalized lattice we need four real numbers (the coordinates of two vertices of 

the basic parallelogram) satisfying one condition (area equal to 1); this means that we can identify 

the space of all normalized lattices with a suitable subset of the Euclidean 3-space (actually one 

needs to add a point at infinity, getting a subset of the 3-dimensional sphere, but this is a detail). It 

turns out that this subset is exactly the complement of a trefoil knot — the first but not last 

appearance of knots in this setting. 

 There is another way of describing the space of normalized lattices. Instead of considering the 

two vertices separately, we can put their coordinates in a 2x2 matrix; the normalization condition 

then amounts to saying that the determinant of this matrix is 1. If we multiply a matrix with 

determinant 1 by another matrix with determinant 1 we still get a matrix with determinant 1, that is 

another normalized lattice. In particular, this holds if we multiply by the diagonal matrix having et 

and e–t as diagonal elements, where t is any real number. Letting t vary in the real numbers, we then 

get a whole family of normalized lattices, that can be thought of as a curve in the complement of the 

trefoil knot, an orbit of the modular flow. See [10] for (a lot) more details. 

The modular flow appears and is very important in several areas of number theory and one-

dimensional complex analysis; but the aspect that is interesting for us now is that the modular flow 

has periodic orbits, forming knots contained in the complement of the trefoil knot; these periodic 

orbits are (of course) called modular knots. It turns out that they are in one-to-one correspondence 

with (similarity classes of) 2x2 matrices with integer coefficients, determinant one and absolute 

value of the trace (the sum of the diagonal elements) greater than 2; these matrices are the 

hyperbolic elements of the modular group (the group of 2x2 matrices with integer coefficients and 

determinant 1). Notice that to give a modular knots it then suffices to give four integer numbers 

(satisfying a number of conditions); so it is not surprising that topological properties of modular 

knots have something to do with number theoretical properties of integer numbers. 

Modular knots have been studied for a long time; however, Ghys found a new way of looking at 

them, giving unexpected results. 
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4. What do they have to do with each other? 
Ghys’ surprising discovery is that a knot can be realized as a Lorenz knot if and only if it can be 

realized as a modular knot. In other words, the class of Lorenz knots coincide with the class of 

modular knots.  

To prove this, Ghys gave a way to pass from a Lorenz knot to a modular knot and conversely, 

based on the idea of Lorenz template previously introduced by Birman and Williams. The Lorenz 

template (see again [2] and [3] for beautiful pictures) is a figure-eight-shaped surface, similar to — 

and thus still sort of butterfly-like — but much simpler than the Lorenz attractor, with the very 

useful property that every Lorenz knot can be continuously pushed onto the Lorenz template 

(remaining equivalent to the original knot). Furthermore, the left wing and the right wing of the 

butterfly in the Lorenz template are joined by a central one-dimensional stick; and every Lorenz 

knot must cross this central stick. More precisely, Birman and Williams showed that a Lorenz knot 

is completely determined by the way it crosses the central stick, going into the left wing or the right 

wing after each crossing; the sequence of left/right choices is enough to completely reconstruct the 

given Lorenz knot.   

What Ghys did was to find a (topologically equivalent) copy of the Lorenz template inside the 

space of normalized lattices (the complement of the trefoil knot), and to show how modular knots 

can be (following a natural geometric procedure) pushed down on this Lorenz template so to 

become Lorenz knots. Conversely, he also showed that every sequence of left/right choices at the 

central stick can be realized by a modular knot, and so all Lorenz knots are modular knots too.  

This discovery has already had profound consequences in the theory of the modular flow (and 

thus in number theory and related areas). All properties of Lorenz knots must be enjoyed by 

modular knots, and conversely. For instance, modular knots must be fibered (that is, it should be 

possible to fill the complement of the knot by surfaces all having the boundary lying on the given 

knot, quite an unusual property for a knot to have) because (as Birman and Williams showed) all 

Lorenz knots are; at present a direct proof (that is a proof not using Lorenz knots) of this fact is not 

known. 

Another unexpected consequence consists in a new way to compute the Rademacher function, a 

very useful number-theoretic object whose classical definition is very cumbersome, involving 

taking the complex logarithm of the 24th root of something known as the Weierstrass discriminant, 

and then following the complex logarithm along a closed curve associated to a (hyperbolic) element 

of the modular group. Going along a closed curve the complex logarithm changes by an integer 

multiple of 2πi; this integer is the value of the Rademacher function computed in the given element 
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of the modular group. Well, Ghys has shown that the Rademacher function is simply given by the 

number of the left choices minus the number of right choices made by the corresponding modular 

knot pressed onto the Lorenz template! 

Ghys’ discovery prompted new advances in the study of the Lorenz model too; for instance, the 

characterization of Lorenz (and hence modular) knots as twisted torus knots given by Birman and 

Kofman was inspired by Ghys’ results. Furthermore, modular knots are much easier to generate 

than Lorenz knots, and since they still preserve all the topological features of Lorenz knots, in 

principle they might be used to explore the intricacies of the Lorenz attractor. In general, the 

appearance of important features of the Lorenz model in a completely different context seems to 

indicate that it was not a complete accident that the first chaotic system to be discovered was 

Lorenz’; possibly the Lorenz model is more basic, more intrinsic than we actually imagine.  

This is probably just the beginning of a long and exciting story: new discoveries, new results and 

new unexpected connections might be waiting just around the corner. But even if this will not be the 

case, Ghys’ work remains a beautiful piece of contemporary mathematics that will be studied and 

admired for a long time.  
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